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1 Abstract

This thesis discusses the partial development of a smart wheelchair robot. The

purpose of the smart wheelchair is to provide transportation to wheelchair bound

persons by use of an autonomous system. The user must only issue high level

commands such as “take me to the bookstore,” and the robot will adapt its plan-

ning and intelligence accordingly. The main function of the smart wheelchair is

transportation, so it follows that the most important aspect of the wheelchair is

its ability to navigate. Robot navigation is a difficult but well studied problem.

However, the smart wheelchair is unique in that it has strict cost requirements.

This constraint limits the effectiveness of the techniques currently used in the

field.

The smart wheelchair project is still under development at the VADER Lab-

oratory. The author’s contributions to the project during his course of study are

discussed in this thesis. Contributions include the initial work required to make

the robot platform functional, the basic navigation software and improvements

made to it, a low cost self-contained pose system, and terrain classification.

Terrain classification is prerequisite for the future work of dynamic drive con-

trol profile selection for improved navigation. This thesis gives perspective to

the problem of robot navigation for low cost platforms and small development

teams.

1
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2 Introduction and Contributions

The goal of the smart wheelchair project is to provide cost-effective autonomous

transportation as required by wheelchair bound persons in every-day life situa-

tions. The project is ultimately intended to be a consumer product. Therefore,

the wheelchair must be able to navigate in practically every environment, in-

cluding indoors and outdoors. The wheelchair’s navigation must be reliable,

robust, and accurate. However, the wheelchair must not be prohibitively ex-

pensive to the target user, so the wheelchair must use low cost sensors and

actuators. Essentially, this makes a difficult problem even more difficult.

Outdoor navigation is a notoriously difficult problem for robots. The suc-

cesses and failures of the DARPA challenges demonstrate the complexity of the

problem [5]. Robots limited to indoor environments have a safer and more pre-

dictable existence; they can take advantage of smooth floors and perpendicular

walls. On the other hand, anything can go wrong for an outdoor robot. For

example, moving along the wrong path could cause the robot to overturn. In

general, outdoor robots have a very small margin of safety. For this reason,

and because the primary function of the wheelchair is transportation, a spe-

cial emphasis has been placed on the performance of the wheelchair’s outdoor

navigation.

All forms of robot navigation depend on the given robot’s locomotion and the

corresponding kinematic model. Dead reckoning, the most simple form of robot

navigation, uses only these concepts. More sophisticated navigation techniques

can use any number of concepts, but there will always be a need to predict

the robot’s motion based on a set of control signals. Therefore, it is necessary

to accurately model a robot’s locomotion in order to enable high performance

navigation. For the smart wheelchair, this need is satisfied with a differential

drive kinematic model and gyroscope corrected odometry.

2
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While accurate odometry is useful, it is not sufficient to estimate position.

The problem with odometry is that errors in the position estimate accumulate

unbounded over time. A simple method of localization is proposed to correct

odometry and bound the error. The localization builds upon the results of

gyroscope corrected odometry and implements an extended Kalman filter with

an odometry prediction phase and a GPS correction phase. The system is

described as self-contained because it hides the details of localization from the

robot’s higher level intelligence. The results of localization can then appear as

the output of an abstracted position sensor.

Navigation can be further improved by considering what type of terrain is

being traversed. If a robot can detect the current terrain type, it can dynami-

cally select a drive control profile for the best performance on the given terrain

type. Additionally, terrain types inconsistent with the robot’s position esti-

mate could be used as a mechanism to identify localization failures. The smart

wheelchair is able to detect three different types of terrain using several unique

terrain classifiers. Two classifiers use tactile information and the third uses spa-

tial information provided by a 3D LIDAR. The final result is given by a weighted

vote combining each classifiers’ result. The task of creating and managing drive

control profiles remains as future work.

None of the preceding results would be possible without suitable device

drivers. The work of this thesis includes the development of three substan-

tial device drivers and some firmware. A device driver has been written for one

of the lab’s newest sensors, an IFM O3D200 3D LIDAR. This device is unique

in its use of XML RPC. Another device driver has been written for the MicroS-

train 3DM-GX1 IMU, which surprisingly lacked a Linux driver despite its age.

The last device driver was written specifically for the smart wheelchair. This

includes the firmware for the chair, which runs the wheelchair’s motor controller.

3
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3 Literature Survey

The wheelchair was originally developed for the Automated Transport and Re-

trieval System (ATRS) project by VADER Laboratory and Freedom Sciences

[4]. This project allows a wheelchair bound person to transport their wheelchair

in a vehicle without the need of a van conversion or an attendant to help load

the chair. This is made possible by an automatic docking procedure. The

smart wheelchair project is very different form the ATRS project. The ATRS

project requires that the wheelchair be positioned within a designated area,

and then sensors on the vehicle are used to control the path of wheelchair. The

smart wheelchair project places all sensors and control on board the wheelchair.

Therefore, the wheelchair must be self sufficient and truly autonomous.

Outdoor navigation is a difficult problem for robots. The problem is exem-

plified by the DARPA challenges of 2004, 2005, and 2007. An article on the 2005

DARPA challenge gives a summary of the problems encountered by Caltech’s

Alice [5]. After a year of dedicated development by a team of programmers,

the robot ultimately failed because of high voltage power lines interfering with

the GPS signal. The challenges imposed by the complexity of the environment

only get worse in urbanized areas. In the 2007 DARPA Urban Challenge, only

11 entries were selected to race out of 53 qualifying entries, and only 6 of the

entries actually finished the race.

A GPS based Kalman filter has been developed for this thesis. GPS is

particularly problematic in urban environments. GPS signals can be reflected

off of buildings causing an error in the GPS fix. This is known as a multi-path

error. Multi-path errors cannot be detected by examining the signal’s dilution

of precision (DOP). Various techniques have been proposed to filter and correct

multi-path errors. Some methods take advantage of the internals of the Kalman

filter, and reject GPS fixes based on the innovation and its covariance [11]. This
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technique requires precise tunning of the filter and rejection threshold based on

the environment. The environment the wheelchair will vary greatly, so this did

not seem appropriate.

More advanced techniques use additional sensors to detect occluded satel-

lites. An omni-directional camera or 3D LIDAR is used to create a 3D map of

the robot’s surroundings which is compared to the estimated satellite geometry.

The robot can then determine if there is a line-of-sight to the satellite [9][8].

Signals from the occluded satellites are discarded when calculating the GPS fix.

Unfortunately, these techniques cannot be used because the wheelchair is unable

to support the additional sensors.

5
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4 Device Drivers

The overall software architecture developed in support of this thesis is shown in

Figure 1. The higher level perception algorithms (upper blocks) are discussed

in Sections 5 through 7. This section focuses on the lower level driver and

firmware development (lower blocks). Device drivers were written when not

available for a given device. A total of three drivers were written for this thesis;

the wheelchair, the inertial measurement unit (IMU), and the flash LIDAR. All

drivers were developed using a similar process. Generic driver libraries were

written in C or C++ to implement the basic functionality. Additional driver

software was then written for the two development platforms used by the lab,

MATLAB and ROS.

Figure 1: The software architecture. The driver are located at the bottom. The
upper blocks will be discussed in the following sections.

4.1 MATLAB

MATLAB is an interpreted weakly-typed programming language. It was pri-

marily used for prototyping and analysis. The MATLAB environment includes

a C API and a MATLAB specific C or C++ compiler which is used to create

6
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shared libraries with the appropriate MATLAB specific linkages. The compiler

is known as mex and the shared libraries are known as mex files. One compiled,

mex files can then be interpreted as part of a MATLAB sentence.

The usage of a mex file is the same as a MATLAB function. The mex file is

called like a function, with the file name as the function name. The mex file can

accept a variable number of arguments, and can return a variable number of

values. Typically the state of the driver is stored internally in the mex file and

hidden from the user. It is common to use only one mex file to interface with the

device driver. Various device driver operations can be selected by specifying a

“command” string as the first argument when calling the mex file. The number

of additional arguments and return values depends on the command string, and

both will be constant for a given command string.

MATLAB is somewhat unique in the way it represents data. The language

has only one primitive type, the matrix. Other types such as cells and structures

can contain many matrices. This must be considered in mex files when moving

data from C/C++ to MATLAB, as all C/C++ primitives must be converted

into matrices. Structures are also useful in representing data. Structures can

contain many named matrices.

4.2 ROS

ROS, the Robotic Operating System, is a meta-operating system designed for

automatons. In general, ROS is much faster than MATLAB, so it was used dur-

ing the robot’s actual runtime. A ROS system is organized into node programs

that communicate with the aid of a master node. A device driver program for

a ROS system must be able to perform all of the utilities of a ROS node and

interface with a device. In the case of the device being a sensor, a ROS node

will typically poll the device for data, and publish the data to a sensor topic.

7
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ROS supports publisher/subscriber and service/caller semantics.

ROS nodes are standard binary executables or Python scripts, but typically

rely on ROS specific code which is organized into packages. For example, nearly

all programs will depend on the roscpp or rospy packages for core utilities such

as inter-node communication. Programs which need to perform transforms be-

tween different coordinate frames will depend on the tf package. For a C++

program, this means that the build process must link to these packages. This

is accomplished by the ROS build system, rosmake.

ROS nodes are typically described by their parameters, data types, topics,

services, and associated direction of data flow. Parameters are set during ini-

tialization or during runtime by the use of the rosparam utility. This is the

method used to configure all aspects of a node, for example device paths, baud

rates, flags, etc. Messages are essentially named data structures. Messages

can subscribed or published to topics. A topic names a channel for messages

of a certain type and purpose. Nodes can also call or handle RPCs known as

services. Services are parameterized by messages and return messages.

4.3 Smart Wheelchair

The smart wheelchair development platform used for this effort is at Figure

2. The platform is based upon a Pronto M91 power chair with significant

enhancements. The two drive wheels are equipped with 12 bit encoders and an

embedded Linux computer has been installed under the seat. Freedom Sciences

provided the embedded Linux distribution and cross-compiler, as well as a device

driver and C API for controlling the motors and reading measurements from

the encoders. Creating a robotic wheelchair required expanding on their work.

The task was split into two sections: software on the embedded computer to

manage the motor control and encoder measurements, from now on referred

8
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to as firmware, and client software which abstracts the wheelchair to a single

device.

Figure 2: The smart wheelchair development platform integrates encoders, an
3DM-GX1 IMU, IFM O3D200 flash LIDAR, and WAAS enabled GPS.

The wheelchair firmware utilizes a PID controller developed by Mr. Samuel

Kirkpatrick [7]. In his thesis, Mr. Kirkpatrick describes the difficulty of the

control signals not being directly correlated to what is being controlled, and the

process of finding the wheelchair’s plant model. The motor control API provided

by Freedom sciences does not use v and omega, but rather forward/reverse and

left/right control signals. An affine transformation is used to map v and omega

to the control signals. The plant model is found experimentally by recording

the steady state response over all possible control signals. The wheelchair is put

on a lift and the wheels are replaced by weights to simulate the expected torque

on each motor during normal operation on even ground.

9
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Mr. Kirkpatrick also describes the challenges of using automatic PID tun-

ning to produce high accuracy results. This is accomplished using a Ziegler-

Nichols tuning process. The process starts by setting the PID gains, Kp, Ki,

and Kd, to zero. Kp is then increased until the system reaches steady state

oscillation, this is recorded as the critical gain, Ku. The period of the sys-

tem’s oscillation is also recorded as Tu. The system gains are then calculated

according to the Ziegler-Nichols equations.

Kp =
Ku

5
, Ki =

2Kp

Tu
, Kd =

KpTu
3

(2)

Mr. Kirkpatrick wrote his controller in the C language. This code was

written to tune and test the controller. It was not intended to actually drive the

chair, so the controller was rewritten. This rewrite has become the wheelchair

firmware. Besides hosting the PID controller, the firmware also manages the

input of control signals and the output of encoder measurements. Safe and

predictable operation is ensured by extensive testing.

The embedded Linux computer can not be used to host the robot’s intel-

ligence for two reasons: most algorithms would be intractable on the limited

hardware, and no ports are available for the attachment of sensors. The embed-

ded computer is designed to be weather proof, so it lacks a keyboard, screen,

etc. The only interface is an ethernet connector, which provides the facility for a

remote terminal. Using a client computer has many benefits, including scalable

hardware and an accessible user interface. The only requirement is that the

embedded computer and client computer must be able to communicate control

signals and encoder measurements.

10
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Communication to and from the wheelchair is achieved by use of the Spread

Toolkit [1]. This technology is chosen for a number of reasons including perfor-

mance, reliability, and portability. The Spread Toolkit has also been used with

some other past projects of the VADER Lab, such as Little Ben [2]. Two Spread

mailboxes are used. A mailbox named “encoder” is used as a channel for en-

coder measurements. These messages include time and the left and right wheel

encoder values as colon separated separated text. A mailbox named “control” is

used as a channel for control signals. These messages include time, forward ve-

locity, and angular velocity, and are also colon separated text. The exact format

of the messages is listed in Appendix A. Plain text is used because it is human

readable and cross platform. It also provides easy encoding and decoding of

messages. The wheelchair’s relatively low frequency of communication implies

that the overhead of working with text is acceptable.

The wheelchair firmware is written to be extremely reliable and safe. A con-

figurable watchdog timer inhibits the wheelchair’s motion if the interval between

control signals is too long. Functional communication channels are asserted on

each communication. The firmware also validates every message sent or re-

ceived. In the event of an error, the wheelchair must fail gracefully in a safe

and predictable manner. Safe operation of the wheelchair is made certain by

extensive unit testing of all aspects of the firmware. A comprehensive list of

unit tests can be found in Appendix A.

The wheelchair device driver, as used by a client computer, is trivial because

of the simple interface provided by the Spread Toolkit. The driver needs only to

open the appropriate Spread mailboxes and convert the various Spread messages

to usable data. It is therefore up to the client to manage the frequency of control

signals to avoid the watchdog timer arresting motion. This is a desired behavior

because it encourages the client-side programmer to write more stable client

11
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code.

The MATLAB driver is a mex file wrapping Spread C function calls and

some supporting m files. The mex file is comprised of only four functions; open,

close, send, and receive. The send and receive functions are parameterized by

a character sting, so data must be encoded and decoded appropriately. The

supporting m files provide this functionality.

The ROS driver was somewhat more involved. ROS typically represents con-

trol signals as geometry msgs/Twist messages. A controller node listens for twist

messages, and attempts to convert them into Spread messages and send them

to the “control” topic. ROS does not supply a standard message for encoder

measurements, therefore a new message type was created, atrs/Ticks. This mes-

sage type is used by other odometry node, which subscribe to ticks messages

and publish odometry messages. Separating the encoder measurements from

the odometry calculations allows for greater modularity and configurability of

the odometry. Odometry and gyroscope corrected odometry will be discussed

in Sections 5 and 6.

4.4 MicroStrain 3DM-GX1

The MicroStrain 3DM-GX1 is an inertial measurement unit (IMU). It contains

three angular gyroscopes, three accelerometers, and three magnetometers, a 16

bit analog to digital converter, and a microcontroller. It uses this hardware to

provide temperature compensated, calibrated and bias corrected movement and

orientation measurements. The device can also calculate various representations

of orientation including a rotation matrix, quaternion, and Euler angles. The

3DM-GX1 as mounted on the smart wheelchair frame is shown at Figure 3.

The device transports data by RS-232 serial communication; a RS-232 to

USB convert can be used in the absence of a serial port. This communication

12
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Figure 3: The MicroStrain 3DM-GX1 AHRS/IMU.

used fixed length binary command and response packets. Two modes of opera-

tion are supported, polling and streaming. In polling mode the programmer re-

quest a measurement by sending the appropriate command. In streaming mode,

measurements are sent repeatedly after only one command is sent. Polling mode

provides flexibility by allowing the programmer to send any command at any

time, but stream offers a significant increase in speed. The maximum stream-

ing frequency is 100Hz and there is one communication per transaction. The

maximum polling frequency is only 50Hz because there are two communications

per transaction. Polling and streaming modes illustrate are illustrated in the

pseudo code of Figure 4.

while data is needed do
send(channel, command)
// wait a few milliseconds
response← receive(channel)
data← parse(response)
process(data)

end while

send(channel, streamcommand)
while data is needed do
response← receive(channel)
data← parse(response)
process(data)

end while

Figure 4: Polling is shown on the left, streaming is shown on the right.

The generic device driver is written in C++ for Ubuntu or any other Unix-

like OS supporting standard terminal I/O facilities. The code for the driver is

split into two parts, with each part organized into a class. A generic raw serial

I/O class hides the low level details of opening a file descriptor, selecting, read,

13
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writing, etc. This greatly simplifies the use of serial communication in the other

3DM-GX1 specific class. Interacting with the IMU typically involves sending

a command, waiting for a response, and parsing. The 3DM-GX1 specific class

hides this process from the programmer. For every particular data transaction,

there is a corresponding method which encapsulates that transaction. Special

consideration is taken to differentiate between polling and streaming modes.

By default the driver assumes polling mode until a special method to start

streaming is called. Likewise, another special method to stop streaming will

return the driver to polling mode. Methods which poll the IMU are not available

in streaming mode, and methods which acquire streaming data are not available

in polling mode. An exception is thrown if a method is called in the wrong mode.

The robustness of the generic device driver affords a very straight forward

write of the MATLAB interface. The mex file simply wraps the object initial-

ization and method calls. The mex file must also transform the data received

from the IMU into a MATLAB data type. The mex file parses the response

buffers and places the data into MATLAB structures with clearly identifiable

fields. The interface is described in Appendix B.

The design of the ROS node was modeled after an existing IMU node in

the main ROS distribution. The node basically reads streaming data from the

device and publishes the data as ROS messages, with a few extra features.

The node includes a calibration service, which allows the caller to temporarily

stop the device and find the gyroscope bias. The node also performs various

diagnostics and publishes diagnostic messages. Self tests are also available to

validate correct operation.

The 3DM-GX1 node publishes the typical IMU message, sensor msgs/IMU.

However, this message only includes the orientation as a quaternion, the lin-

ear accelerations, and the angular velocities; it does not include magnetometer

14
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readings. For the sake of completion, a new message was created to sepa-

rately represent magnetometer readings, m3dmgx1 imu/Magfield. Ideally, this

new message should be contained in the general IMU message, but this would

require ROS updating the distribution or maintaining a branch of sensor msgs.

4.5 IFM O3D200

The smart wheelchair integrates an IFM O3D200 3D Flash LIDAR underneath

the left armrest, as shown in Figure 5. In effect, a flash LIDAR is a camera

which measures distances. It features a 64 by 50 pixel PMD matrix and a large

infrared illuminator. The sensor measures light intensity and distance using the

principle of time-of-flight. Besides supplying intensity and distance images, the

device is also capable of calculating the 3D coordinates and supplying x, y, and

z value images. The O3D200 is originally intended for indoor use, but it has

several qualities which make it the best choice for outdoor use.

Figure 5: The IFM O3D200 3D Flash LIDAR.

Recently the Kinect has gained popularity as a 3D sensor [12]. The Kinect

does not work outside because its emitted signal is relatively weak compared

to the expected noise. The O3D200 works outside with only a slight drop in

performance. Additionally, Kinect is a toy; it is constructed of plastic and has

moving parts. The O3D200 is designed for industrial use and it is design to be

resilient and compact. It has an all metal body and no moving parts.
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LIDARs measure distance by using the principle of time-of-flight. A LIDAR

will emit light and then wait for the light to bounce back. The time delay is

divided by the speed of light to find the distance traveled. However, it is not

feasible to measure the actual time delay because it is so small. In practice, the

time delay is found by measuring the light’s change in phase, but this creates an

aliasing problem. The O3D200 can only measure distances in some unambiguous

range, which depends on the frequency of the emitted light. Distances outside

of this range are measured as the distance modulo the unambiguous range. The

O3D200 provides two frequency modes. Single frequency mode has a shorter

unambiguous range of 7.5 m, but a higher FPS. Dual frequency mode has a

much larger unambiguous range or 45.0 m, but half the FPS. Is is important

to note that the unambiguous range does not change the effective range of the

sensor, which is based on the intensity of the emitted light. The effective range

of the sensor was experimentally determined to be about 12.0 m.

The device provides two channels of communication over an ethernet cable.

XML RPC is used for the configuration of the device. A TCP/IP socket is

used for triggering exposures and the transfer of images. The device is able to

return multiple images for each exposure, depending on the imaging mode. The

O3D200 is also capable of some simple image processing including median and

mean filtering. The 3D LIDARS’s FPS depends on the desired exposure time,

but the maximum FPS is 20 Hz in single frequency mode, and 10 Hz in dual

frequency mode.

While some software preexisted the driver written for this thesis, it was

of limited use. IFM supplied operator software that visualized the data, but

provided no way of getting the data for further processing. IFM also provided

a SDK, but it was primarily written for Windows. A small Linux demo existed,

but was not robust enough for actual use on a robot.
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The generic device driver for the O3D200 was written in C for Ubuntu and

any other Unix-like OS with libxmlrpc. The driver API is organized into three

sets of functions: a set of XML RPC functions for configuration, a set of TCP

functions for requesting and receiving images, and a set of high-level functions

combining both. The first two sets are intended for specific usages, the third set

provides an easy interface for the most common usage. Any mixture of functions

are supported. This design allows for an API which both powerful and easy to

use. A C structure is used to hold information about the device and any other

data required for communication. The generic driver is packaged as a shared

library so it can be used easily by other programs.

The MATLAB interface provides the basic functionality required by the

typical user. It allows the user to initialize the device, set the imaging mode,

and get images. It also allows the user to change basic camera setting such as

the frequency mode and the exposure time. The mex file was written using the

high-level functions of the API, making it very easy to implement and maintain.

A complete listing of the mex file interface can be found in Appendix C.

The O3D200 node was modeled after other camera nodes. Camera nodes

typically publish images and distortion calibration information as sensor msgs/Image

and sensor msgs/CameraInfo messages respectively. For the 3D LIDAR node,

image messages are replaced by sensor msgs/PointCloud2 messages. Calibra-

tion information is not published because the O3D200 cannot be calibrated.

Camera nodes typically expose the camera settings as node parameters. For

each LIDAR setting there is a corresponding node parameter. On execution the

O3D200 node initializes the LIDAR, configures it according to node paramaters,

and begins streaming < x, y, z > coordinates and light intensity i. The O3D200

node also performs various diagnostics and publishes diagnostic messages.
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5 Odometry

Given robot and its kinematic model, and a set of motion measurements sam-

pled at some frequency, a simple open-loop controller can be designed with

an estimate of the robot’s position as the state. This estimation of position

is known as odometry. Odometry is described by Equation 3, where p is the

robot’s position and ṗ is the robot’s motion which can be measured. If the

motion measurements are sampled at a frequency fs, then ∆t = 1/fs is the

time between measurements. This illustrates the fact that odometry is simply

the integration of motion over time.

pt = ṗt ·∆t+ pt−1 =

t∑
q=0

ṗq ·∆t (3)

It is important to note that no feedback is provided, and errors in the state

estimate are not corrected. In other words, the errors of the motion measure-

ments are accumulated in the position estimate, and therefore the error in po-

sition grows unbounded over time. Despite this, odometry is very useful in

practice, if only to supplement more sophisticated localization techniques.

Figure 6: The robot’s local frame.

The wheelchair has differential drive kinematics. The wheel chair has pneu-

matic tires on the two drive wheels (shaded blue) and four rubber caster wheels,
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as seen in Figure 2. The two drive wheels are each equipped with an encoder

which provides measurements of angular displacement. The robots local frame

will be defined as the following. The wheelchair is facing the in the positive X

direction, and the left side of the wheelchair is in the positive Y direction. This

is shown in Figure 6. Let the rotational displacements of the wheels be denoted

as ∆φl and ∆φr, for the left and right wheel respectively. It is also useful to

know the angular velocities of each wheel, φ̇l and φ̇l, shown in Equation 4. Let

the wheel radii be rr and rl, and the wheels separated by length 2l.

 φ̇l

φ̇r

 =
1

∆t

 ∆φl

∆φr

 (4)

Various assumptions must be made to derive the kinematic model. It is

assumed that the wheels are always vertical to the ground, each wheel has a

single point of contact, there is no wheel slippage, the rotation of each wheel

is around the vertical axis, and the wheels are connected by a rigid frame.

The constraints of each wheel must also be considered. The wheelchair’s two

pneumatic wheels are fixed wheels and will enforce constrains on the motion

of the robot. Fixed wheels can only move in the plane of the wheel, motion

orthogonal to the plane of the wheel must be zero. The four caster wheels will

not constrain the movement of the robot. These assumptions and constraints

allow for an idealized yet realistic model of the wheelchairs kinematics.

We will represent the position and orientation of the wheelchair in the global

frame with the vector p = [ x y θ ]T . A rotation matrix R(θ) ∈ SO(3)

about the vertical Z axis is used to perform a coordinate transform between

the global frame to the robot’s local frame. For each fixed wheel, there will be

two constraints. The rolling constraint is shown in Equation 5 and the sliding

constraint is shown in Equation 6. The rolling constraint represents the rolling
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Figure 7: A fixed wheel in the robot’s local frame.

motion of the wheel, while the sliding constraint restricts all motion to the plane

of the wheel [10]. The values of α and β define the geometry of the wheel, as

shown in Figure 7. The length d is the distance from the wheel to the robot’s

axis of rotation.

[
sin(α+ β) − cos(α+ β) (−d) cos(β)

]
R(θ) ṗ− rφ̇ = 0 (5)

[
cos(α+ β) sin(α+ β) d sin(β)

]
R(θ) ṗ = 0 (6)

The geometry of each wheel is known so the constraints can be found imme-

diately. The left wheel will have α = π/2 and β = 0, and the right wheel will

have α = −π/2 and β = π. The value of d is simply l. The constraints for each

wheel are then combined to give the constraints for the entire robot, as shown

in Equation 7. This can be inverted to find the forward kinematic model, as

shown in Equation 8 and 9. Notice that the sliding constraint is the same for

each wheel and only shown once.


1 0 l

1 0 −l

0 1 0

R(θ) ṗ =


rrφ̇r

rlφ̇l

0

 (7)
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ṗ = R(θ)−1


1 0 l

1 0 −l

0 1 0


−1 

rrφ̇r

rlφ̇l

0

 (8)

ṗ = R(θ)−1


1/2 1/2

0 0

1/(2l) −1/(2l)


 rrφ̇r

rlφ̇l

 (9)

Knowing the kinematic model allows the robot to estimate its change in

position given φ̇r and φ̇l. However, there is a slight implementation issue. Notice

that the encoders actually provide ∆φr and ∆φl. Also notice that odometry

eventually multiplies ṗ by time. The kinematic equation can be easily modified

to take advantage of this observation by multiplying both sides by ∆t. The φ̇

will become ∆φ, and ṗ will become ∆p. This is shown in Equation 10. The

result is a cleaner implementation of odometry which is not dependent on time.

It is also more accurate, since errors in the measurement of time no longer have

an effect on the system.

∆p = R(θ)−1


1/2 1/2

0 0

1/(2l) −1/(2l)


 rr∆φr

rl∆φl

 (10)

It is desirable to describe the robot’s motion in the most intuitive way possi-

ble. This is accomplished by describing the robot’s motion using two parameters:

v for the robot’s linear forward velocity and ω for the robot’s angular velocity.

The values of v and ω can be found by combining the rotational velocities of the

wheels, as shown in Equation 11. The (v, ω) motion pair can then be used to

simplify the kinematic model to Equation 12, which can be further simplified to

Equation 13. This last simplification matches our intuitive understanding the
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robot’s motion, where change in position is dependent on the speed and heading

of the robot, and change in heading depends on the turning speed.

 v

ω

 =

 1/2 1/2

1/(2l) −1/(2l)


 rr∆φr

rl∆φl

 (11)

ṗ = R(θ)−1


v

0

ω

 (12)

xt = xt−1 + v cos θt−1 ∆t

yt = yt−1 + v sin θt−1 ∆t

θt = θt−1 + ω ∆t

(13)

The error in odometry can not be measured directly. However, the error

in the encoder measurements can be determined experimentally. This error

can be propagated through the kinematic model to find the error in the (v, ω)

motion pair. This in turn can be used to find the error in the position estimate

provided by odometry. The error in the encoder measurements is represented as

a covariance matrix C∆φ = diag(σ∆φr
, σ∆φl

). The relation defined in Equation

11 is used to find the new covariance matrix representing the error in in v and

ω. This is shown in Equation 14 and 15. Notice that the covariance matrix

representing the motion error will be constant, since C∆φ, ∆t, and the wheel

radii are constant.

J∆φ =
1

∆t

 rr/2 rl/2

rr/(2l) −rl/(2l)

 (14)

Cm = J∆φ C∆φ J∆φ
T (15)

The same strategy can be used to find the covariance matrix representing

22



www.manaraa.com

the error in the position estimate provided by odometry. Two Jacobians are

required. The first Jacobian propagates the error in the motion to the error

in the position. The second Jacobian propagates the past error in position to

the current error in position. The final result is Equation 18. This means that

both estimates of position and error in position can be updated for every pair

of encoder measurements.

Jm =


cos θ ∆t 0

sin θ ∆t 0

0 ∆t

 (16)

Jp =


1 0 − sin θ v∆t

0 1 cos θ v∆t

0 0 1

 (17)

Cp|t = Jp Cp|t−1 Jp
T + Jm Cm Jm

T (18)
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6 Gyroscope Corrected Odometry

6.1 Poblem Statement

The accuracy of odometry is limited by the rapid accumulation of error in the

position, and more importantly, the orientation. This is result of the robot’s

non-linear kinematic model. It was shown in the last section, in Equation 18,

that error in ω accumulates in θ, and error in θ compounds the error in x and y.

The largest contributor to odometry error is wheel slip, which effectively causes

a bias in orientation. It can be determined from the kinematic model that a

bias in orientation causes errors in position which scale quadratically with time.

Mitigating wheel slip errors would cause the overall error in position would be

greatly improved.

Gyroscope corrected odometry takes advantage of 3DM-GX1 IMU to re-

duce the error in ω and θ. The IMU measures the the wheelchairs rota-

tional velocity ωIMU using gyroscopes. The covariance matrix C∆φ is re-

placed by a new covariance matrix combining encoder error and IMU error,

Cs = diag(σ∆φr
, σ∆φl

, σωIMU
). The covariance matrix representing the error in

motion must be updated to reflect this change as shown below. Notice that all

other odometry equations, such as those for Cp and Jp, will remain unchanged.

xt = xt−1 + v cos θt−1 ∆t

yt = yt−1 + v sin θt−1 ∆t

θt = θt−1 + ωIMU ∆t

(19)

Js =
1

∆t

 rr/2 rl/2 0

0 0 1

 (20)

Cm = Js Cs Js
T (21)
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Wheel slip is defined as the difference between the measured wheel velocity

and the actual wheel velocity, as shown in Equation 22. The wheel slips for

the robot’s left and right wheels are denoted as Sl and Sr respectively. When

known, these wheel slips can be used to correct the robot’s v and ω values, as

shown in Equations 23 and 24. The problem of actually measuring Sl and Sr

remains. In actuality, the wheelchair is not capable of distinguishing between

Sl and Sr, so a heuristic is used to find an approximate solution.

s = rφ̇− v (22)

v∗ =
(rr · φ̇r − sr) + (rl · φ̇l − sl)

2
= v − sr

2
− sl

2
(23)

ω∗ =
(rr · φ̇r − sr)− (rl · φ̇l − sl)

2l
= ω − sr

2l
+
sl
2l

= ωIMU (24)

The smart wheelchair cannot directly measure wheel slip, it attempts to in-

fer wheel slip by comparing the wheelchair’s angular velocity as calculated by

uncorrected odometry, ω, to the angular velocity as measured by the gyroscope,

ωIMU . It is assumed that the gyroscope is very accurate, and ωIMU is approxi-

mately equal to the actual rotational velocity, ω∗. The wheelchair can quantify

the effects of wheel slip, but it still cannot determine which wheel slipped or to

what extent. That quantity is (sl−sr)/(2l). This is enough to correct rotational

velocity, since ω∗ is simply equal to ωIMU , as shown in Equation 24. Further

assumptions must be made to find v∗, which may not hold in all situations.

It is assumed that the wheels will always slip to resist motion; a wheel with a

positive velocity will always have a positive slip. It will also be assumed that

only one wheel slips at any given instant.

It is necessary to decide which wheel has slipped before a slip can be cal-

culated. The error in rotational velocity is determined as ωerr = ωIMU − ω.

The slipping wheel is identified by the sign of ωerr and the direction of the
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chair. The rotational velocity are described in the robot’s local frame (Figure

6), so a positive rotation signifies a left turn. If the chair is moving forward and

sign(ωerr) = −1, then the uncorrected odometry is turning to the left faster

then measured by the gyroscope. This implies that the left wheel is slipping,

and over contributing to uncorrected odometry. Similarly, if sign(ωerr) = 1,

then the right wheel is slipping. When the wheelchair is traveling in reverse,

the sign of the rotational velocity is effectively inverted so the opposite wheel is

chosen. Once a wheel has been chosen, the rotational velocity of that wheel can

be corrected. For example, Equation 25 shows the corrections for right wheel

slip.

φ̇∗r = φ̇r −
Sr
rr

=
2l ωIMU + rl φ̇l

rr
φ̇∗l = φ̇l (25)

The wheelchair does not attempt to calculate wheel slip if the chair is turning

in place, or otherwise sign(φ̇l) 6= sign(φ̇r). In this situation the wheelchair is in

a tight turn which affects orientation more then displacement. Therefore, the

wheelchair will benefit from corrections to rotational velocity, but corrections

to linear velocity will be negligible.

6.2 Experimental Results

In practice, gyroscope corrected odometry performs much better than normal

odometry. A test was constructed to compare the two methods of odometry.

The wheelchair was driven down a 45.0 m long hallway at an average speed of

0.5 m/s in a serpentine path. This was done to induce wheel slip and other

odometry errors. For each run, identical sensor data was processed by both

methods. The results are shown in Figure 8. It can be observed that uncorrected

odometry suffers greatly from drift. This is most likely caused by the deformable

wheels having slightly different radii then found during the calibration. The
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gyroscope corrected odometry is unaffected by this inaccuracy. Overall, the

path of gyroscope corrected odometry is more straight and representative of the

true path. Each run seems only rotated by some random angle, and it would

seem that the error is likely due to a slight misalignment of the starting position.

Figure 8: A comparison of odometry and gyroscope corrected odometry.

Gyroscope corrected odometry was also compared to uncorrected odometry

on different terrains. Different terrains have different associated tractions which

affect wheel slip. The results are shown in Figures 9, 10, and 11. The odometry

was first tested on brick. There was very little wheel slip on this terrain, so the

uncorrected odometry performed particularly well. The wheelchair was then

tested on pavement. The result of brick and pavement were expected to be

similar, but much more wheel slip occurred on the pavement. This was caused

by the pavement being slightly sloped. Driving on a sloped surface will cause
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wheel slip to the down slope wheel. Finally, the wheelchair was tested on grass.

The most wheel slip was was measured for grass, as expected. The results

of gyroscope corrected odometry were very good. The position estimate was

accurate even for high amount of wheel slip. The position estimate stayed very

close to the ground truth provided by GPS.

Figure 9: A comparison of odometry on brick.
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Figure 10: A comparison of odometry on pavement.

Figure 11: A comparison of odometry on grass.

29



www.manaraa.com

7 Self Contained Pose System

7.1 Problem Statement

Little Ben used a OxTS RT-3050 pose system for high bandwidth pose estima-

tion in the DARPA Urban Challenge [2]. Little Ben used to this pose system to

completely determine its position and orientation, all other sensor information

was used for obstacle detection and not for localization. The RT-3050 used a

Kalman filter-based algorithm to combine inertial sensors, GPS updates with

differential corrections from the OmniStar VBS service, and vehicle odometry

information from the native embedded vehicle systems. Pose estimates where

accurate to within half a meter circular error probable (CEP) and provided at a

high update rate of 100 Hz. The RT-3050 was specifically designed for ground

vehicles, and was resilient to GPS outages and GPS multi-path errors. Unfortu-

nately, the RT-3050 was also expensive, costing about $40,000. For a consumer

product such as a robotic wheelchair, the cost of a similar pose system would

be prohibitively expensive.

The smart wheelchair has a similar yet more cost-effective pose system. The

pose system uses a Kalman filter-based algorithm to combine the results of gy-

roscope corrected odometry with GPS measurements from a low cost sensor.

Unfortunately, the wheelchair’s pose system is not very accurate in urban en-

vironments because it suffers greatly from GPS multi-path errors, as described

below. Unsuccessful attempts were made to correct for these errors. Further

improvements to the pose system are left as future work.

The extended Kalman filter (EKF) is a nonlinear version of the Kalman

filter. Specifically, the Kalman filter can be implemented by an EKF. However,

an EKF is not provably optimal. An EKF may have nonlinear state transition

or observation models, described by equations f and h respectively. The func-

tions f and h can be used to predict the state and measurements, but they
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cannot be used directly for the propagation of error. The functions must be

linearized about the current state and control vectors. This is done by finding

the corresponding Jacobians F and H, shown below.

Fk =
∂f

∂p

∣∣∣
pk,uk

Hk =
∂h

∂p

∣∣∣
p−

k

(26)

The state is the wheelchair’s estimated position and orientation,

p = [ x y θ ]T , with error represented by covariance matrix C. The state

transition function is used to predict the next state based on the current state

and the control vector. The transition function f is taken directly from the

kinematic model shown in Equation 13. The control vector is simply [v, ω]T .

The noise associated with the controls is Q. The new error is calculated using

a combination of the current error and the control error. The matrix F is the

Jacobian of f with respect to the state vector p, and W is the Jacobian of f

with respect to the control vector u.

p−k = f(pk,uk) (27)

C−k = FkCk−1Fk
T + WkQkWk

T (28)

The Kalman gain is found using the error prediction and the error of the

observation. The matrix H is the Jacobian of the observation function h with

respect to the state vector p, and V is the Jacobian of h with respect to the

observation vector z. The observation model is trivial because the GPS directly

measures position and orientation. Therefore z = [ x y θ ]T , like the state

vector. This causes the matrices H and V to be the identity matrix.

Kk = C−k Hk
T (HkC

−
k Hk

T + VkRVk
T )−1 (29)
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pk+1 = p−k + Kk(zk − h(p−k )) (30)

Ck+1 = C−k −KkHkC
−
k (31)

It became apparent that the pose system accuracy was limited by the accu-

racy of the GPS. Multiple signal reflections, or multi-path errors, are common

in urban environments where GPS signals can bounce off of buildings. The

horizontal dilution of precision (HDOP) does not model multi-path errors, so

confidence based on HDOP problematic. Multi-path errors cannot be filtered

based on confidence. The performance of the EKF is degraded due to the cor-

rection phase using incorrect but overconfident GPS measurements. The smart

wheelchair robot is intended for use in urban environments, so it must be able

to remove multi-path errors in order to effectively utilize GPS.

Research has been conducted to reduce multi-path errors in urban envi-

ronments by detecting occluded satellites. These methods rely on additional

sensing to perceive buildings, such as an omni-directional infrared camera [9]

or 3D LIDAR [8]. The wheelchair is equipped with a 3D LIDAR, but it has a

narrow field of view and not capable of perceiving buildings. Given the state

of the art, mounting either an omni-directional camera or suitable 3D LIDAR

is not feasible because of cost and space requirements. Multi-path errors could

also be improved by equipping another antenna or a better GPS sensor. This

was not feasible because of cost.

A system was developed to mitigate multi-path errors and their adverse

effect on urban navigation. This technique was derived from observation. In

the absence of multi-path errors the GPS works as expected, and changes in

position correspond the the chairs motion. When a multi-path error occurs,

the GPS fix “jumps” to a new position not corresponding to the chairs motion.

This sudden change in the GPS fix is known as a GPS jump. By detecting GPS
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Figure 12: The initial results of the EKF. Odometry is shown in blue, GPS fix
is shown in red, the result of the EKF is shown in green. The wheelchair starts
near the middle Southern area heading East. It travels around the block and
returns the the starting point.
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jumps it is possible to detect when a multi-path error is occurring. Discarding

GPS fixes suffering from multi-path errors should improve the accuracy of the

EKF.

The detection of GPS jumps is based on the difference between GPS fixes and

the state estimated by the EKF. Both the position and angular velocity of the

chair are considered. First, the GPS fix is compared to the position predicted

by the EKF. A GPS jump is detected if the difference in position exceeds a

threshold derived from HDOP. Second, the angular velocity calculated from the

last three GPS fixes is compared to the angular velocity predicted by the EKF

(as measured by the gyroscope). A GPS jump is detected when the difference

between angular velocity exceeds a threshold derived from the HDOP. When a

GPS jump is detected, the GPS fix is discarded by the EKF and the correction

phase is postponed.

7.2 Experimental Results

The results of GPS multi-path error filtering were not favorable. An example of

the filter result is shown in Figure 13. The figure shows two concurrent multi-

path errors. The first multi-path error is rejected based on angular velocity.

The second multi-path error is not rejected because angular velocity matches

the filter. The filter failed to remove a number of similar multi-path errors.

Multi-path errors which cause a persistent drift of the GPS fix are particularly

problematic. This is illustrated in Figure 14. These error do not cause GPS

jumps, so they are undetectable to the filter. It appears that the complexity

of multi-path error cannot be reduced to errors in displacement and angular

velocity. Future work could be done to improve the filter, but the accuracy will

always be limited by the overly simple notion of GPS jumps. It would be more

productive to adopt more realistic models of multi-path error.
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The self contained pose system ultimately failed because of unacceptable

noise in the GPS fix. While this problem could have been solved by upgrading

the robot’s sensor suite, this would have decreased the cost-effectiveness of the

robot. Attempts were made to develop techniques to correct GPS multi-path

errors by detecting and filtering GPS jumps, but they were not successful.
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Figure 13: Particularly bad GPS data. The wheelchair is moving West to East
on the sidewalk under trees. GPS fix is shown in red, rejected GPS fix is shown
in yellow, he result of the EKF is shown in green. Notice that a multi-path error
is not filtered because rotational velocity matches that of the wheelchair.

Figure 14: GPS multi-path causing a persistent error in GPS heading. The
wheelchair is traveling West to East on the sidewalk South of the parking garage.
The GPS has slowly drifted North and pulled the estimated position into a
building. Such an error is almost indistinguishable from good data.
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8 Terrain Classification

The wheelchair may need to navigate hazardous terrains such as ice, mud, and

loose gravel. These terrains can cause the wheelchair’s wheels to slip, adversely

effecting the navigation performance. In the worst case, these terrains could

cause navigation errors resulting in mission failure. Navigation performance

could be increased for a given terrain by using a drive control profile tunned

for that specific terrain. Terrain information could also be used to identify lo-

calization failures. For example, a localization error could be identified if the

robot detected grass while expecting to be on a sidewalk. Of course, both of

these ideas require knowing the terrain type. This thesis solves the terrain de-

tection problem by implementing a terrain classifier utilizing traditional pattern

recognition techniques.

In general, their are two approaches to terrain detection: visual and tactile.

Visual approaches use cameras and LIDARs, tactile approaches use accelerom-

eters and wheel slip measurements. Both approaches have been studied previ-

ously, and each has complementary advantages and disadvantages. This thesis

discusses both approaches, and reasons that a combination of the two would

increase terrain classification performance.

Visual approaches have been developed for various robots including those

competing in the DARPA Urban Challenge, and the Mars Rover [6]. However,

the performance of visual approaches is diminished under obscuring rain or snow

conditions, superficial ground coverings, and shadows. Visual systems may also

confuse terrains which look similar but have different tactile properties, for

example dirt and mud.

Tactile approaches which measure vibration are naturally able to sense ter-

rain roughness which directly effects drive control. Vibration methods also have

the benefit of being robust in respect to weather conditions and ground cover-
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ings. Tactile approaches which measure wheel slip can distinguish between sets

of terrains with similar expected slip values, but slip measurements are more

dependent on weather conditions. The disadvantage shared by both methods

is that tactile information for a path can only be collected while the robot is

traversing that path, thus it is impossible to predict changes in terrain type.

Visual information can collected for paths not yet traversed, and can therefore

predict terrain type.

It was decided that three terrains would be considered for this thesis; grass,

brick, and pavement. It was hypothesized that grass would be distinct from brick

and pavement, and that brick and pavement should be similar and therefore

more difficult to differentiate. Three different classifiers, each using a different

sensor, were created to detect terrain type. A vibration classifier processing the

vibration of the chassis caused by the road surface, a slip classifier processing

the wheel slips found by gyroscope corrected odometry, and a texture classifier

processing the variations in the ground surface.

The training sets were collected by driving the wheelchair over the three

terrains while recording all relevant sensor outputs. The wheelchair was driven

on flat sections of terrain, in a straight path, and at the nominal operational

speed. Nearly flat sections of terrain were used to reduce the influence of slope

on tactile measurements. The wheelchair’s speed would also effect tactile mea-

surements so data was recorded for two typical speeds, 0.3 m/s and 0.9 m/s,

or the maximum speed of the first two drive modes. This implies that tactile

classifiers will only provide accurate results when the wheelchair is moving at

the nominal speed, or somewhere near 0.3 m/s to 0.9 m/s. It should also be

noted that transient movement at the beginning and end of each recording was

removed by truncation; accelerating from rest and braking to stop were not

considered by the classifier.
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8.1 Vibration Classifier

The vibration classifier uses tactile information about the driving surface to

determine the terrain type. As the wheelchair moves the chassis is vibrated

at different frequencies by various elements of the ground structure. Therefore,

vibration measurements directly provides information on how the surface effects

the robot chassis for a given motion, and indirectly provides information on the

texture of the surface. The classifier does not attempt to distinguish between

these concepts, and assumes they are identical for practical purposes.

The vibration classifier is a nearest neighbor classifier [3]. Nearest neighbor

classifiers are are fast and surprising accurate, effectively approximating complex

decision boundaries without any additional cost. There is also no classifier

training, the training set is used directly for classification. The classifier works

by comparing the test data point to the data points of the training set. The

most frequent label of the nearest data points is selected. The nearest points

are those with the least Euclidean distance. This classifier uses the L2 norm.

Data points are created by recording the 3D accelerometer vector for a set

duration, and then finding an FFT for each dimension of the vector. For this

thesis the duration of the recording was set to three seconds. With the IMU

reporting accelerometer vectors at 100 Hz, the recording was 900 elements total.

Half of each FFT is ignored because of symmetry, making the size of each data

point 450 elements. Additionally, the first element of the FFT representing

the average value was removed. This was done because the average values

of the accelerations do not provide information on the texture of the surface;

essentially the average values of the accelerations represent the g vector relative

to the robot, or the orientation of the robot.

The remaining recording was then split into three second sections. The three

second sections are not contiguous, but staggered at one second intervals. This
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was done to hopefully smooth the decision boundary intrinsic to the nearest

neighbor classifier. A robot operating in real time could run the classifier on a

three second moving window, allowing the robot to react instantly to changes

in terrain. This was not done, and left for future work.

The results of the classifier were favorable. The overall accuracy was good.

There was some confusion between pavement and brick as expected, but some-

what surprisingly the brick was classified as pavement much more than pavement

was classified as brick. Grass was usually not confused, and had both a low type

I and type II error. The success of the classifier can be contributed to the nicely

separated class spaces. All of the classes are relatively distinct which allows for

easier classification and high classifier performance. Examples of the data can

be seen in Figures 15, 16, and 17.

Classifier Label
Actual Label Brick Grass Pavement Type I Error
Brick 99 17 62 79
Grass 0 146 13 13
Pavement 8 0 158 8
Type II Error 8 17 75 100

Confidence 0.925 0.896 0.678

Table 1: Confusion matrix for the vibration classifier.

8.2 Slip Classifier

The slip classifier attempts to classify terrains by the amount of wheel slip

detected during movement. Wheel slip is measured from a combination of gyro-

scope and wheel encoder measurements, as described in the section on gyroscope

corrected odometry. Different terrains have an associated traction, effecting the

ability of a wheel to grip the surface. The traction for a surface is inferred from

wheel slip, which allows the classifier to decide a terrain type based on traction.

As described in Section 6, the wheelchair calculates wheel slip based on the
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Figure 15: The vibration FFT for brick.

Figure 16: The vibration FFT for pavement.

Figure 17: The vibration FFT for grass.
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difference between the angular velocity calculated by odometry and the angular

velocity measured by the gyroscope. The wheelchair is only able to approximate

wheel slip, by assuming that only one wheel slips at a given instant. The

classifier considers a span of slip measurements, so the slip measurements must

be recorded over time. Slip measurements for each wheel are combined into

single dimension vector by considering sl as positive and sr as negative. This

will be referred to as the slip signal.

The slip classifier uses simple thresholding on the mean square (RMS) of

the slip signal. The RMS provides the average magnitude of slip. For each

terrain type, all of the slip vectors are concatenated and the RMS is calculated.

Thresholds are calculated from these values. During classification, the RMS of

a recording is thresholded and a terrain type is selected. This classifier is simple

but effective. More complex classifiers are not appropriate given the nature of

the data. More complex classifiers were attempted, but they did not perform

well because they were overtrained on the training set.

The results of the slip classifier were not very accurate. The classifier was

able to classify grass, but often confused brick and pavement as predicted. Slip

was determined to be highly dependent on terrain slope. For example, if the

wheelchair were to traverse sloped pavement, the slip would be high enough

that it would be confused with grass. This causes the classifier to incorrectly

match slope rather then terrain. Slip was also found to be very dependent on

weather conditions. Trials run on wet grass had much higher slip than trials

run on dry grass. As a consequence, the accuracy of the slip classifier varies

greatly depending on the current conditions. In conclusion, the slip classifier is

not a good terrain classifier. It is unable to discern between similar surfaces.

Instead, slip measurements may be better suited to score the drivability of a

known terrain.
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Classifier Label
Actual Label Brick Grass Pavement Type I Error
Brick 81 27 70 97
Grass 4 146 9 13
Pavement 92 9 65 101
Type II Error 96 36 79 211

Confidence 0.458 0.802 0.451

Table 2: Confusion matrix for the slip classifier.

8.3 Texture Classifier

The texture classifier is the only visual approach used in this thesis. It is as-

sumed that each terrain type will have a unique texture, and that a terrain will

be identifiable by that texture. For example, pavement will be relatively smooth

with only a few edges, on the other hand grass will be uneven and bumpy. Tra-

ditionally, image processing techniques have been used to detect textures. This

thesis presents a method to detect textures directly using spatial information

obtained from 3D imaging.

The texture classifier uses an IFM O3D200 3D LIDAR in place of traditional

cameras or LIDARs. The 3D LIDAR takes distance images of the area imme-

diately in front of the robot, and these images are converted into point clouds.

From each point cloud a ground plane is segmented and extracted. The ground

plane is then processed by the texture classifier. It should be noted that the

O3D200 is not pointed at the ground, and is not assigned specifically to the task

of terrain detection. The O3D200 is mounted facing forward, as was required for

other purposes such as mapping, localization, and obstacle avoidance. Despite

this, a ground plane is usually visible and usable by the texture classifier.

The texture classifier is a nearest neighbor classifier, like the vibration clas-

sifier. Again this means that the classifier is not trained; classification depends

directly on the training data. This classifier also uses an L2 norm. Similarly

to the vibration classifier, frequency information is used to construct the data
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points. A spatial FFT of the ground plane is used to represent the texture of

a given terrain. High frequencies correspond to sharp features such as loose

rocks, low frequencies correspond to more gradual features such as small peaks

or troughs. Special considerations are made to calculate the spatial FFT as

described below.

A common requirement of classifiers is that the number of features remains

constant, or in the case of the nearest neighbor classifiers, each point has the

same dimension. This implies that each spatial FFT must have the same num-

ber of elements, and therefore each patch of ground plane must be exactly the

same size. This is a difficult requirement for the O3D200, which provides rel-

atively sparse point clouds. There is also the issue of actually calculating the

spatial FFT. Calculating the spatial FFT requires a regular grid of data. The

O3D200 provides point clouds which are highly irregular. In order to solve both

problems, the ground plane is interpolated and formatted to a grid.

Data points are constructed as follows. For each point cloud, a patch of the

ground plane is extracted; this patch must be roughly the required size of 1 m2.

The path is rotated and translated so it resides in the XY plane. The Z value

of each point then represents the distance from the ground plane. The patch is

then interpolated and formatted to a 1 m2 grid which is 20 by 20 elements. The

2D spatial FFT is then performed on the grid. The DC component is removed,

redundant symmetric data is discarded.

Classifier Label
Actual Label Brick Grass Pavement Type I Error
Brick 491 271 28 299
Grass 119 552 26 225
Pavement 200 170 386 370
Type II Error 399 441 54 894

Confidence 0.606 0.556 0.878

Table 3: Confusion matrix for the texture classifier.
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The results of the texture classifier were somewhat disappointing. The clas-

sifier often mislabeled brick and grass. The classifier had high confidence when

classifying pavement, but it rarely used this label. The inaccuracy of the texture

classifier is likely due to the processing of the data and the low resolution of

the 3D LIDAR. In combination these factors remove nearly all high frequency

information, making all data points more similar. Examples of the data can be

seen in Figures 18, 19, and 20.

Inaccuracies could also be introduced during the ground plane extraction

phase. The ground plane extractor was not tuned to any given terrain, and

it was not tested if the ground plane extractor performs differently on various

terrains. Errors in the ground plane extraction phase would cause biases in the

data points leading to bad classifications. As future work, the performance of

the ground plane extractor should verified. Ideally, the classifier should detect

bad points, and filter them accordingly.
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Figure 18: The spatial FFT for brick.

Figure 19: The spatial FFT for pavement.

Figure 20: The spatial FFT for grass.
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9 Conclusions and Future Work

This thesis makes four major contributions. Low level software, including device

drivers and firmware, was created to enable perception and control. Odometry

and gyroscope corrected odometry were developed to support future localization

techniques. A self-contained pose system was developed and the correction of

multi-path errors was attempted. Finally, three classifiers were created to detect

terrain type.

Gyroscope corrected odometry presented a heuristic to detect wheel slip.

This heuristic is very simple, and makes assumptions that are not always true.

This technique could be improved upon. For example, the heuristic could be

expanded to consider the wheelchair’s control signal. It may then be able to

differentiate between accelerating slip and breaking slip. The wheelchair can

measure ωact but it cannot measure vact. Knowing both vact and ωact would

allow the robot to determine the slip for both wheels. As future work, some

other sensor could be used to accurately measure the wheelchair’s linear velocity.

The future work for the pose system is somewhat open ended. State of

the art techniques require sensing obstructed GPS signals. At present, the

required sensors are not compatible with the wheelchair. In the future, these

sensors may become smaller and more cost-effective, and these techniques can

be implemented on the wheelchair. The filter could also be improved. The EKF

used only gyroscope corrected odometry and GPS. Future work could attempt

to integrate additional sensors, such as WiFi, RFID, LIDAR based localization,

etc, to improve the filter results.

Three classifiers for terrain detection are presented. The vibration classifier,

slip classifier, and texture classifier use tactile and visual methods to determine

terrain type. The vibration classifier performed the best. The slip classifier was

able to distinguish between some terrains, but its accuracy was limited by the
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variance of the slip measurement. The texture classifier attempted to extract

texture information from 3D point clouds, but the low densities limited the

results. A combinational classifier could combine the individual results by a

weighted vote to give a final terrain type. Often combinations of classifiers can

outperform all of the individual classifiers.

The slip classifier was prone to misclassification resulting from variations in

the terrain. The slip measure is affected by a number of variables including

slope. As future work, a more complex system would be able to detect slope

using the IMU and adjust the classifier accordingly. This new classifier would

be able to better classify terrains on any slope. Other future work remains, as

slip measurements are still affected by weather, ground covering, etc.

This thesis proposes methods of detecting terrain type, with the goal of

selecting terrain specific drive control profiles. The actual creation of terrain

specific drive control profiles remains as future work. Research would need to

be done on how to actually tune the drive control for a given terrain. While

this is out of the scope of this thesis, it would no doubt be extremely useful to

the wheelchair and other mobile robots.
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A Wheelchair Firmware and Device Driver De-

tails

A.1 Firmware Unit Tests

The following unit tests were performed on the wheelchair firmware.

• Bad command line option causes graceful exit.

• Bad Spread address causes graceful exit.

• Spread connect error causes graceful exit.

• Spread receive error causes graceful exit.

• Spread send error causes graceful exit.

• Malformed control packet during decoding causes graceful exit.

• Malformed encoder packet during decoding causes graceful exit.

• Malformed control packet during encoding causes graceful exit.

• Malformed encoder packet during encoding causes graceful exit.

• Control v exceeds safety limit causes graceful exit.

• Control ω exceeds safety limit causes graceful exit.

• DriverHasControl fails, loss of driver control causes graceful exit.

• SetMotion fails, cannot set (v, ω) causes graceful exit.

• Watchdog timer expires, no control signals causes arrested motion.

A.2 Spread Message Format

Mailbox Structure

encoder
dddddd.dddddd:+d.dd:+d.dd:dddddd:dddddd
time, control v, control ω, left encoder, right encoder

control
dddddd.dddddd:+d.dd:+d.dd
time, control v, control ω

Table 4: Formatting of the wheelchair Spread messages.
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B 3DM-GX1 Device Driver Details

B.1 MATLAB API

• m3dmgx1_mex(’open’, device_name)

• m3dmgx1_mex(’close’)

Initializes and closes the device.

• m3dmgx1_mex(’startstreaming’)

• m3dmgx1_mex(’stopstreaming’)

Starts and stops streaming data mode.

• data_structure = m3dmgx1_mex(’streamdata’)

Gets IMU data in streaming mode.

data_structure

q – The quaternion representing orientation

magfield – The magnetic field 3D vector

accel – The linear acclerations 3D vector

angrate – The angular velocities 3D vector

time – The time of the measurement

• data_structure = m3dmgx1_mex(’data’)

Gets IMU data in polling mode.

• info_structure = m3dmgx1_mex(’info’)

Gets the device information in polling mode.

info_structure

serial – The serial number

firmware – The firmware version

loop_time – The time duration of the internal IMU loop

• euler_structure = m3dmgx1_mex(’euler’)

Gets Euler angles in polling mode.

euler_structure

pitch – The pitch angle

roll – The roll angle

52



www.manaraa.com

yaw – The yaw angle

time – The time of the measurement

• matrix_structure = m3dmgx1_mex(’matrix’)

Gets orientation matrix in polling mode.

matrix_structure

matrix – The 3 by 3 orientation matrix

time – The time of the measurement

• m3dmgx1_mex(’bias’)

Gets orientation matrix in polling mode.

• value = m3dmgx1_mex(’eepromr’, address)

• m3dmgx1_mex(’eepromw’, address, value)

Reads and writes values to the EEPROM memory.
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C O3D200 Device Driver Details

C.1 MATLAB API

• o3d200_mex(’startup’, xml_url)

• o3d200_mex(’shutdown’)

Initializes and closes the device.

• o3d200_mex(’mode’, mode_string)

Sets the imaging mode using a mode string. Each letter of the mode string
signifies an image to be created. The letters are defined as follows.

d/D – distance

i/I – intensity

x/X – x coordinate

y/Y – y coordinate

z/Z – z coordinate

Capital letters tell the LIDAR to do a new capture before responding with
the image. For example, the string ’xyz’ would return images from an old
capture, the string ’Xyz’ would return images from a new capture, the
string ’XYZ’ would return images from three new captures.

• [i_1, i_2, ..., i_n] = o3d200_mex(’image’)

Receives images according to the imaging mode. An image will be returned
for each letter of the mode string. The images will be in the same left-to-
right order as the mode string.

• o3d200_mex(’exposure’, INT1, INT2)

Sets the image integration times, also known as the exposure times. INT1
is the first exposure time. INT2 is the second exposure time.

• o3d200_mex(’frequency’, f)

Sets the frequency mode. The mode number can be 0 through 4. The
various frequency modes are documented in the programmer’s guide.

• o3d200_mex(’mideanfilter’, on_off)

• o3d200_mex(’meanfilter’, on_off)

Turns a filter on or off.

54



www.manaraa.com

• frontend_structure = o3d200_mex(’frontend’)

Gets the LIDAR’s frontend configuration.

frontend_structure

f_mode – The frequency mode (0-4)

double_sample – The double sample mode (0=off, 1=on)

first_integral – The first exposure time (ms)

second_integral – The second exposure time (ms)

inter_frame_mute_time – The inter-frame mute time (ms)

• network_structure = o3d200_mex(’network’)

Get the LIDAR’s network configuration.

network_structure

ip – The IP address

subnet – The subnet address

gateway – The gateway address

xml_port – The XML port number

tcp_port – The TCP port number

dhcp_mode – The DHCP mode (0=off, 1=on)
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